NAG Toolbox for MATLAB

f08kd

1 Purpose

f08kd computes the singular value decomposition (SVD) of a real m by n matrix A, optionally computing the left and/or right singular vectors, by using divide-and-conquer method.

2 Syntax

3 Description

The SVD is written as

$$A = U \Sigma V^{\mathrm{T}}$$
,

where Σ is an m by n matrix which is zero except for its $\min(m,n)$ diagonal elements, U is an m by m orthogonal matrix, and V is an n by n orthogonal matrix. The diagonal elements of Σ are the singular values of A; they are real and nonnegative, and are returned in descending order. The first $\min(m,n)$ columns of U and V are the left and right singular vectors of A.

Note that the function returns V^{T} , not V.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D 1999 *LAPACK Users' Guide* (3rd Edition) SIAM, Philadelphia URL: http://www.netlib.org/lapack/lug

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: **jobz** – **string**

Specifies options for computing all or part of the matrix U.

$$iobz = 'A'$$

All m columns of U and all n rows of V^{T} are returned in the arrays **u** and **vt**.

$$jobz = 'S'$$

The first min(m, n) columns of U and the first min(m, n) rows of V^{T} are returned in the arrays \mathbf{u} and \mathbf{vt} .

$$jobz = 'O'$$

If $\mathbf{m} \geq \mathbf{n}$, the first n columns of U are overwritten on the array \mathbf{a} and all rows of V^{T} are returned in the array $\mathbf{v}\mathbf{t}$. Otherwise, all columns of U are returned in the array \mathbf{u} and the first m rows of V^{T} are overwritten in the array $\mathbf{v}\mathbf{t}$.

$$jobz = 'N'$$

No columns of U or rows of V^{T} are computed.

Constraint: jobz = 'A', 'S', 'O' or 'N'.

[NP3663/21] f08kd.1

f08kd NAG Toolbox Manual

2: a(lda,*) - double array

The first dimension of the array \mathbf{a} must be at least $\max(1, \mathbf{m})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The m by n matrix A.

5.2 Optional Input Parameters

1: m - int32 scalar

Default: The first dimension of the array a.

m, the number of rows of the matrix A.

Constraint: $\mathbf{m} \geq 0$.

2: n - int32 scalar

Default: The second dimension of the array a.

n, the number of columns of the matrix A.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldu, ldvt, work, lwork, iwork

5.4 Output Parameters

1: a(lda,*) - double array

The first dimension of the array **a** must be at least $max(1, \mathbf{m})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

If $\mathbf{jobz} = 'O'$, **a** is overwritten with the first *n* columns of *U* (the left singular vectors, stored column-wise) if $\mathbf{m} \ge \mathbf{n}$; **a** is overwritten with the first *m* rows of V^T (the right singular vectors, stored row-wise) otherwise.

If $jobz \neq 'O'$, the contents of a are destroyed.

2: s(*) – double array

Note: the dimension of the array **s** must be at least $max(1, min(\mathbf{m}, \mathbf{n}))$.

The singular values of A, sorted so that $s(i) \ge s(i+1)$.

3: u(ldu,*) - double array

The first dimension, Idu, of the array u must satisfy

```
if jobz = 'S' or 'A' or jobz = 'O' and m < n, ldu \ge max(1, m); ldu \ge 1 otherwise.
```

The second dimension of the array must be at least max(1, ucol), where ucol is the number of columns of U requested

```
ucol = \mathbf{m} if \mathbf{jobz} = 'A' or \mathbf{jobz} = 'O' and \mathbf{m} < \mathbf{n}; ucol = \min(\mathbf{m}, \mathbf{n}) if \mathbf{jobz} = 'S'.
```

If jobz = 'A' or jobz = 'O' and m < n, u contains the m by m orthogonal matrix U.

If $\mathbf{jobz} = 'S'$, \mathbf{u} contains the first $\min(m, n)$ columns of U (the left singular vectors, stored columnwise).

If $\mathbf{jobz} = 'O'$ and $\mathbf{m} \ge \mathbf{n}$, or $\mathbf{jobz} = 'N'$, \mathbf{u} is not referenced.

f08kd.2 [NP3663/21]

4: vt(ldvt,*) - double array

The first dimension, ldvt, of the array vt must satisfy

```
if \mathbf{jobz} = \mathbf{'A'} or \mathbf{jobz} = \mathbf{'O'} and \mathbf{m} \ge \mathbf{n}, \mathbf{ldvt} \ge \max(1, \mathbf{n}); if \mathbf{jobz} = \mathbf{'S'}, \mathbf{ldvt} \ge \max(1, \min(\mathbf{m}, \mathbf{n})); \mathbf{ldvt} \ge 1 otherwise.
```

The second dimension of the array must be at least $max(1, \mathbf{n})$

If $\mathbf{jobz} = 'A'$ or $\mathbf{jobz} = 'O'$ and $\mathbf{m} \ge \mathbf{n}$, \mathbf{vt} contains the *n* by *n* orthogonal matrix V^{T} .

If $\mathbf{jobz} = 'S'$, \mathbf{vt} contains the first $\min(m, n)$ rows of V^{T} (the right singular vectors, stored row-wise).

If jobz = 'O' and m < n, or jobz = 'N', vt is not referenced.

5: info – int32 scalar

info = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

$$info = -i$$

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

1: jobz, 2: m, 3: n, 4: a, 5: lda, 6: s, 7: u, 8: ldu, 9: vt, 10: ldvt, 11: work, 12: lwork, 13: iwork, 14: info.

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

info > 0

f08kd did not converge, the updating process failed.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a nearby matrix (A + E), where

$$||E||_2 = O(\epsilon)||A||_2$$

and ϵ is the *machine precision*. In addition, the computed singular vectors are nearly orthogonal to working precision. See Section 4.9 of Anderson *et al.* 1999 for further details.

8 Further Comments

The total number of floating-point operations is approximately proportional to mn^2 when m > n and m^2n otherwise.

The singular values are returned in descending order.

The complex analogue of this function is f08kp.

9 Example

```
jobz = 'Overwrite A by tranpose(V)';
a = [0, 0.28, -0.48, 1.07, -2.35, 0.62;
0, -1.67, -3.09, 1.22, 2.93, -7.39;
```

[NP3663/21] f08kd.3

f08kd NAG Toolbox Manual

```
0, 0.939999999999999, 0.99, 0.79, -1.45, 1.03; 0, -0.78, -0.21, 0.63, 2.3, -2.57]; [aOut, s, u, vt, info] = f08kd(jobz, a)
aOut =

    -0.2085
    -0.3119
    0.1069
    0.4215
    -0.8186

    0.0952
    -0.3347
    0.4707
    -0.7760
    -0.2349

    0.2686
    0.6933
    0.6265
    0.1643
    -0.1662

    -0.0000
            0
    -0.0000
    -0.0000
                  s =
     9.6278
      2.8739
     1.3350
     0.4918
                  0.8243 -0.0572 -0.5470
0.3172 -0.0878 0.2647
0.3526 0.7674 0.4989
    -0.1342
     0.9064
    -0.1947
     0.3499 -0.3092
                                 0.6326 -0.6179
vt =
                                 0 0
                0
                       0
                                                   0
info =
                0
```

f08kd.4 (last) [NP3663/21]